
The	study	of	scaling	FFAGs	in	
a	multipole	ion	trap

David	Kelliher (ISIS/RAL/STFC)	on	behalf	of	the	IBEX	team,
with	thanks	to	H.	Okamoto	and	his	group.



How	we	study	accelerators
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We	typically	employ	theory,	simulation,	experimental	beam	physics	studies.



Analogue	experiment
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Fig. 1: The PS analogue model

by Council members and many European and American scientists. In addition to the papers by the PS
Group [12] on the design of the 30 GeV machine and aspects of beam dynamics, W. Heisenberg was
asked to present the users’ view as to the beam energy required. He recommended to ‘build a machine
that could be operated without difficulty in the region somewhat above 20 GeV but which could, in the
limit, be extended in energy to 30 GeV’.

After the conference, the Council, satisfied by the very positive response to the work of the PS
Group, gave the green light to building an alternating-gradient proton synchrotron with nominal beam
energy of 25 GeV at 12 kG and 3 s cycle time (which could in fact at reduced repetition rate be driven
up to 28 GeV) at a cost provisionally estimated at 130 MCHF. The Council also approved the proposal
that the PS Study Group should move to Geneva and nominated a ‘chief architect’ (R. Steiger from
Zürich) so that construction work on the site could be organized without delay. Group members could
use temporary offices and a hall for experimental work made available at the Institut de Physique (where
some barracks were added) and – with the exception of Dahl – began moving their families to Geneva.
The collaboration between them was of course enormously improved.

At Brookhaven the construction of a similar machine, the AGS, was authorized shortly afterwards,
including a small-scale model electron synchrotron, which provided an experimental demonstration of
the feasibility of going through the transition energy. For years to come, a friendly competition developed
between the teams building the two machines, with full exchange of information.

3 Construction of the PS
Once the Council had decided on the basic parameters of the machines to be built, work on their realiza-
tion could begin (Fig. 2). But also the infrastructure of a future laboratory – personnel and purchasing
offices, site and safety management – had to be set up and recruitment of staff at all levels and from
all member states had to be organized. Thus the responsibility for a quite unusual large-scale operation
was entrusted to the two dozen or so members of the provisional CERN, of whom few had industrial or
managerial experience.

While the parameters of the PS were further refined for cost and performance, a realistic project
planning had to be set up. All components of the synchrotron had to be designed ab initio with very few
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• Analogue	experiments	offer	another	tool	to	study	
accelerator	physics.		

[M.	Barbier,	1956]



Paul	traps

• Paul	trap:	Non-neutral	plasma	trap	in	which	an	RF	field	confines	the	plasma	radially	via	
strong	focusing.	DC	voltages	confines	the	plasma	longitudinally.

• Unlike	a	quadrupole	channel,	the	plasma	is	trapped	in-situ	with	the	confining	waveform	
applied	in	time.	This	is	analogous	to	the	co-moving	frame	in	the	beam	case.

Electrode configuration for Paul traps

Paul	trap,	Wolfgang	Paul	(1953). Linear	Paul	Trap	(1989). Strong	focusing.
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Paul	trap	applications

Mass	spectroscopy,	quantum	computing	research	…
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Comparison	of	transverse	dynamics	(1)

Accelerator	case.

where		

6

Paul	trap	case.

where		

where	in	both	cases	the	space	charge	potential	φsc is	found	by	solving	the	Poisson	equation.
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lattice space	charge



Beam	physics	studies	in	LPTs

Advantages	include
• Flexibility:	The	lattice	structure,	working	point	and	plasma	density	can	be	
selected	within	a	wide	range.
• Compactness:	Traps	are	typically	~10cm	long	and,	together	with	ancillary	
equipment,	require	just	a	few	m2	of	laboratory	space.
• Cost:	Construction	and	running	costs	are	orders	of	magnitude	lower	than	carrying	
out	experiments	on	typical	accelerators.
• Availability:	Typically,	time	allocated	for	beam	physics	experiments	on	
accelerators	is	limited.	No	such	limit	applies	to	plasma	traps.
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Devices	to	datePaul'Trap'Simulator'experiment'(PTSX)'at'
Princeton'

Plasma length 2 m Wall voltage 140 V

Wall radius 10 cm End electrode voltage 20 V

Plasma radius ~ 1 cm Frequency 60 kHz

Cesium ion mass 133 amu Pressure 5 x 10-10 Torr

Ion source grid voltages < 10 V Trapping time 100 ms

Paul�trap�electrodes
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Plasma

•  Ronald'Davidson,'Erik'Gilson,'Philip'Edimion,'Richard'Majeski,''Moses'Chung,'
Hong'Qin…'

SPOD	(various	devices),	Hiroshima,	Japan.

Steinwedel.15 The latter essentially consists of four parallel
cylindrical electrodes arranged in the way as shown in Fig. 1
and with voltages !! applied to the rods as indicated. This
configuration gives rise to the electric potential "(x ,y)
"!(x2#y2)/r0

2, where r0 is the inscribed radius of the in-
terelectrode space. Charged particles in the interelectrode
space obey exactly the same transverse equations of motion
as derived for a charged particle traveling through a mag-
netic quadrupole Eq. #3$, where we now have Kx ,y
"!2em!/r0

2. Likewise, for positively charged particles and
!$0 we get a focusing effect in the x direction and a defo-
cusing effect in the y direction. To obtain transverse confine-
ment in both directions, the idea is to use a periodic, time-
dependent potential !(t). This is very analogous to the
spatially varying quadrupole potential as seen by a charged
particle traveling through the periodic lattice of a storage
ring with magnetic AG confinement. The conventional
choice is a sinusoidal excitation

!# t $"U#V cos%t . #4$

Introducing reduced parameters

&"%t/2, ax"8eU/mr0
2%2, qx"4eV/mr0

2%2,
#5$ay"#8eU/mr0

2%2, qy"#4eV/mr0
2%2,

the equations of motion for the x and y directions can be
transformed into the canonical form of Mathieu’s equation:

d2u
d&2

%#au#2qu cos 2&$u"0, u"x ,y . #6$

The properties of Mathieu’s equation have been recorded in
detail #see, e.g., Ref. 16, and references therein$. Here, we
only note that the (qu ,au) plane is divided into stable and
unstable regions by characteristic curves #see Fig. 2$. For
(qu ,au) in a stable region, solutions to Mathieu’s equations
are bound whereas in an unstable region the solutions tend to
infinity with time. To have overall transverse stability #i.e., in
both transverse dimensions x and y), we must demand that
both (qx ,ax) and (qy ,ay) belong to stable regions of Eq. #6$.

The choice of a sinusoidally time-dependent potential is
by no means unique. The arbitrary nature of the scalar po-

tential was emphasized by Richards et al., who investigated
the possibilities of using a rectangularly time-varying
potential17

!# t $"U#VS'# t $, #7$

where S'(t) is a rectangular function with duty cycle '. In
this paper, we consider a pulsed voltage excitation of the
quadrupole electrodes having a wave form cycle period T ,
and pulse duration (T , on the specific form

!# t $"U#VP(# t $,

P(# t $"! 1 if "t")(T/2
0 if (T/2&"t")#1#($T/2
#1 if #1#($T/2&"t")T/2,

#8$

P(# t%T $"P(# t $.

Defining here the angular repetition frequency to be %
"2*/T and using the transformations Eq. #5$ the equations
of motion for pulsed excitation appear as

d2u
d&2

%+au#2quP̃(#&$,u"0, u"x ,y , #9$

where P̃((&) #see Fig. 3$ is the obvious transformation of
P((t) to the reduced parameter space

P̃(#&$"#
1 if "&")

1
2 (*

0 if
1
2 (*&"&")

1
2 #1#($*

#1 if
1
2 #1#($*&"&")

1
2 * ,

#10$

P̃(#&%*$"P(#&$.

FIG. 1. Electric quadrupole configuration. A time-varying voltage !!(t) is
applied as shown. When operated as a linear Paul trap each electrode is
sectioned into three and a dc voltage U0 is applied to the eight end pieces in
addition to !(t) or #!(t).

FIG. 2. (q ,a)-stability diagrams. The lines bound the stability regions of
Eq. #6$, i.e., the case of sinusoidal excitation. The shaded areas show the
stability regions of Eq. #9$ when ("1/2 for pulsed excitation.

1372 Phys. Plasmas, Vol. 8, No. 4, April 2001 N. Kjærgaard and M. Drewsen

Aarhus,	Denmark.

,	Princeton,	USA.

IBEX,	RAL,	UK	(under	commissioning).
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Linear	Paul	trap	basics.
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For convenience, we also define the unit vectors

ûx5 x̂ , û y5 ŷ , and û z5 ẑ . ~7!

In the typical case where uqiu!1 and uaiu!1, the first-order
solution to Eq. ~4! is9

ui~ t !'u1i cos~v it1wSi!F11
qi
2 cos~Vt !G , ~8!

where

v i>
1
2VAai1 1

2qi
2 ~9!

and wSi is a phase determined by the initial conditions of the
ion position and velocity. The ‘‘secular’’ motion of the ion is
the harmonic oscillation at frequency v i and amplitude u1i .
The motion corresponding to the cos(Vt) term is driven by
the applied ac field, and is called ‘‘micromotion.’’

From Eq. ~8!, the kinetic energy of the ion averaged over
a period of the secular motion is

EKi5
1
2m^u̇ i

2&> 1
4 mu1i

2 ~v i
21 1

8 qi
2V2!

> 1
4 mu1i

2 v i
2S 11

qi
2

qi
212ai

D , ~10!

where the first term in the last two expressions is the kinetic
energy due to the secular motion, and the second term is the
kinetic energy due to the micromotion. For motion parallel to
the trap axis, qz

250, so the average kinetic energy is due
entirely to secular motion. Because the secular motion is
typically thermal, incoherent motion, the kinetic energy due
to motion in the z direction is

EKz5
1
2kBTz>

1
4mu1z

2 vz
2, ~11!

where kB is the Boltzmann constant, and the kinetic energy is
characterized by a temperature Tz . Typically, in the radial
direction, uaiu!qi

2(i5x ,y). The energy of the radial secular
motion is then approximately equal to that of the radial mi-
cromotion. In this case,

EKi5kBTi>
1
2mu1i

2 v i
2~ i5x ,y !. ~12!

The energy of the secular motion can be reduced by
cooling.10 As the amplitude u1i of the secular motion is re-
duced, the micromotion and its corresponding energy are
also reduced according to Eqs. ~8! and ~10!. The Doppler-
cooling limit of the ion temperature due to secular motion in
one direction is10

TD>
\g

2kB
, ~13!

where g is the linewidth of the cooling transition. As an
example, for the 199Hg1 5d106s 2S1/2!5d106p 2P1/2 transi-
tion used for laser cooling, g52p•70 MHz. The Doppler-
limited cooling temperature is TD>1.7 mK.

If, in addition to the trap fields described above, the ion
is also subjected to a uniform static electric field Edc , Eq. ~4!
becomes

ü i1@ai12qi cos~Vt !#
V2

4 ui5
QEdc• û i

m . ~14!

To lowest order in ai and qi , the solution to Eq. ~14! is

ui~ t !>@u0i1u1i cos~v it1wSi!#F11
qi
2 cos~Vt !G , ~15!

where

u0i>
4QEdc• û i

m~ai1
1
2qi
2!V2

>
QEdc• û i
mv i

2 . ~16!

The field Edc displaces the average position of the ion to
u05u0xx̂1u0yŷ1u0zẑ , but does not directly change u1i .
The ac electric field at position u0 causes micromotion of
amplitude 1

2u0iqi along û i . We will call this ‘‘excess micro-
motion,’’ to distinguish it from the unavoidable micromotion
that occurs when the secular motion carries the ion back and
forth through the nodal line of the ac field. Unlike secular
motion, excess micromotion cannot be significantly reduced
by cooling methods because it is driven motion.

Excess micromotion can also be caused by a phase dif-
ference wac between the ac potentials applied to electrodes 2
and 4. For example, in the trap shown in Fig. 1, the potential
applied to the electrode 4 may be 1V0 cos(Vt1 1

2wac), and to
electrode 2, V0 cos(Vt2 1

2wac). If wac!1, these potentials are
approximately equal to V0 cos(Vt)2 1

2V0wac sin(Vt) and
V0 cos(Vt)1 1

2V0wac sin(Vt), respectively. Near the trap axis,
the additional field due to the 6 1

2V0wac sin(Vt) terms is ap-
proximately that of two parallel plates held at potentials
6 1

2V0wac sin(Vt) and separated by 2R/a .11 The value of a
depends on the geometry of the trap. We use the method of
van Wijngaarden and Drake12 to calculate the dipole moment
for our trap ~R50.81 mm, electrode radius r50.38 mm!,
and find a50.75. If we include a uniform static field, the
total electric field near the center of the trap is

FIG. 1. Linear Paul trap ~a! side view and ~b! axial view. A string of trapped
ions is shown schematically in ~a!. For clarity, the endcaps are not shown in
~b!. The trap electrodes are labeled 1, 2, 3, and 4. The trap axis defines the
z-axis, and the origin of the z axis is centered between the two endcaps.

5026 J. Appl. Phys., Vol. 83, No. 10, 15 May 1998 Berkeland et al.
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RF	and	DC	potential	terms.

Stability	parameters	(a,q).

Eqn.	of	motion	(Mathieu	equation).

Secular/micromotion (betatron/envelope) .

[D.	J.	Berkeland et	al,	1998]		

For	example	assume	Ar+,	1MHz	RF,	5mm	
radius.	ν =	0.25	if	Vq =	+/- 72	V.		



Lattice	flexibility
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Many	lattice	configurations	can	be	realised .	One	constraint	is	the	bandwidth	of	the	RF	amplifier.

Triplet

2014/06/20 5th International Particle Accelerator Conference (Dresden, Germany 2014)

We changed the pulse heights, keeping these ratios !

m = 3

Triplet	lattice	[Okamoto,	IPAC14]



Space	charge
• Assuming	a	stationary	plasma	the	tune	depression	is	given	by
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• In	SPOD/IBEX	temperatures	typically	around	0.1-0.5eV	and	up	up	to	107	ions	can	be	stored	(ν/ν0	~
0.85-0.9).	This	is	more	than	enough	to	simulate	typical	high	intensity	rings.

• Note:	In	the	zero	temperature	limit,	accessible	by	Doppler	laser	cooling,	ν→0.	In	this	limit	the	
plasma	frequency	equals	the	bare	secular	frequency	(betatron tune).



IBEX	experimental	setup
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NI-6612 PCI (to be used in pc)
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1x TTL 
trigger

2x TTL to 
control switch

single variable psu,
Max voltage 32V, set 

current limit to < 50mA?

Master timing controller

cable

2x WMA300 high 
voltage amplifier

High speed high voltage amplifier WMA-300
- High voltage 50x amplifier up to +150V and -150V

- DC to 5MHz large signal bandwidth and 300mA current
- High slew rate: 2000V/us

- 50 ohm input

BNC cable to 4x 
end cap B

BNC cable to 4x 
end cap A

To 2x central rod 
(RED)

To 2x central rod 
(BLUE)

AFG produces 2 identical waveforms 
180 degrees phase shifted

Arbitrary function generator

There is no 
protection devices on 

the switch, over 
current protection is 
provided by power 

supply.

AFG requires +/- 3v into 50 ohm to get +/- 150V out of VMA300.
only channel 2 can do full voltage range

ch1 is 3Vpp 50ohm 60mA, ch2 is 10Vpp 50ohm 100mA.
There is also an independent dc offset +/- 1.5V into 50 ohm.

TTL trigger input 100nS min pulse width.

10MHz, 2047 samples, 100nS min timing resolution.
1MHz clock expected ?

Vch1(ac+dc)

Vch2(ac+dc)

50xVch1(ac+dc)

50xVch2(ac+dc)

IBEX electronics Basic system for day 1, 
1v06 29 aug 2016
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TTL ? 
trigger

I could not find 
picture of PCI 
timing card 

end caps and central rods are capacitive 
loads, unterminated

Capacitance = 6pF measured, but expect 
more when the lid is on and when rods 

and caps are wired together.

Vpsu 0v

Vpsu 0v

Vpsu

+/- 75Vac +/- 75Vdc
Clamped at +/-150V

CHAN A

+/- 150Vac +/- 75Vdc
Clamped at +/-150V

CHAN B

I do not like the BNC2121, it may 
be quick and convenient, which is 
necessary to start with, but it does 

not really provide the best signals. I 
would prefer to make up a cable to 

drive directly from pci card.

Quad bnc 
feedthrough

Quad bnc 
feedthrough

red pair
blue pair

red pair blue pair

2x LED
indicators

2bnc 2bnc

If timing of 1sec duration is 
needed, pci will not do this at 

10MHz maximum length. 
Outputs will have to be 
controlled by software.

BNC coax 1 
to 4 cable

BNC coax 1 
to 4 cable

4 independent wires

4 independent wires

4 independent wires 
to 4 rods

Bnc ground is not feedthrough 
to chamber ground.

Stage	1	hardware	setup	(Schematic:	A.	Baird)

the ions directly. During the current commissioning phase
only the Faraday cup was installed. First ions were trapped,
extracted and observed in January 2017. Due to fast switch-
ing gate noise, the signal is determined from a di�erence
between FC signals with and without argon gas. An example
trace of the ion signal is shown in Fig. 4.

Figure 4: Oscilloscope trace of ion signal on the Faraday cup
after extraction from the IBEX Paul trap. The upper trace shows
timing signal (blue) and signals in yellow with (upper) and without
argon gas (lower), the di�erence between these gives the ion signal
(pink) shown on the lower trace. The noise arising from the fast
gate switch can also be observed. Note that 1 mV corresponds to
0.2 nA on the vertical axis.

The ion signal will vary depending on the operating point
at which trapping occurs. The operating tune can be con-
trolled using either the waveform amplitude (voltage) V0 or
frequency f , according to Eqn. 2.

⌫0 =

p
2eV0g

⇡3m

 
1

f r0

!2
(2)

where r0 = 5 mm is the inscribed radius of the trapping
region and g is a geometrical factor roughly equal to unity [9].
At each operating point a di�erent number of ions will be
confined stably, as shown in Fig 5. At some values one
expects almost no ions (i.e. tune of 0.25) as the value is near
to a structural resonance driven by any trap imperfections.

DISCUSSION
The experimental commissioning has proceeded well.

However, a few adjustments will be made to improve op-
eration going forward. At present, there is noise detected
on the FC from the fast switching of the end caps. In addi-
tion to the signal amplifier, adjustment of the position of the
faraday cup, additional shielding of cables and adjusting the
switching speed should all improve this scenario to improve
signal to noise ratio.

To provide an additional diagnostic and information of the
transverse ion distribution, an MCP detector with phosphor
screen is being installed. As the MCP gain is known to satu-
rate for high ion number, an analysis method for correcting
this and extracting ion number from the resulting images has
been developed [10]. The MCP will be calibrated against
ion signal from the faraday cup to determine ion number.

To stabilise the number of ions trapped during the ion-
isation period, the usual operating scenario will include

Figure 5: Variation of ion number with varying tune using either
voltage or frequency to shift the operating point. Note that for the
frequency (red) data, an additional DC bias was applied to all four
rods, which enhances the ion trapping e�ciency.

trapping at one tune value, before shifting the experiment
to a chosen working point for an experimental period prior
to extraction. In this way the starting ion number can be
made predictable between each run of an automated set of
experiments, allowing a true comparison of ion number data.
This scenario will be implemented in the near future. The
LabView controls will be further developed to ensure the ex-
periment is automated, such that large parameter variations
can be reached without intervention from the experimental-
ist.
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Integer	crossing	in	non-scaling	FFAGs.
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Figure 3: Typical waveforms of the driving rf voltages applied to the LPT electrodes. The doublet 
focusing is approximated by a sinusoidal waveform oscillating at 1 MHz. As for the dipole 
perturbation, two different rf waveforms are considered; namely, (a) a piecewise constant voltage 
emulating the local dipole field error such as leakage field from the septum magnet in EMMA, and 
(b) a sinusoidally varying voltage corresponding to a single Fourier harmonic of the pulse voltage in 
(a). 
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Figure 4: Resonance stop bands identified by the S-POD system. Starting with roughly 104   ions in 
the LPT, we measured the final ion number after 10 ms at various fixed tunes. There are 140 data 
points of independent measurements in the tune range 7 ≤ν0 ≤17 . (a) stop-band distribution with 
no dipole perturbation, (b) stop-band distribution with a piecewise constant dipole perturbation 
whose pulse height and width are 1 V and 1 µ s, and (c) stop-band distribution with a sinusoidal 
dipole perturbation as shown in Fig. 3(b). For reference, the data of the case (a) is replotted with a 
black solid line in the middle and lower pictures.   
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Figure 8: Fraction of ions remaining after integer resonance crossing. Fractional ion losses obtained 
with various dipole perturbation strengths are plotted as a function of crossing speed u. The bare 
tune ν0  is reduced from 9.5 to 7.5. Filled and open symbols show, respectively, experimental data 
and Warp simulation results in which the initial ion distribution is Gaussian with a temperature of 
0.5 eV. 
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• Introduce	integer	resonance	by	adding	perturbation	waveform.	Ramp	tune	through	resonance	by	varying	voltage.	
• Measure	number	of	surviving	ions.		Compare	with	theory	and	numerical	simulation.
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Scaling	FFAG	studies.

• Aim:	study	lattice	nonlinearities	with	space	charge.

• Construct	a	Paul	trap	in	which	the	quadrupole	term	is	still	dominant.	
Nonlinear	terms,	at	least	up	to	octopole are	added	– either	by	adding	extra	
rods	or	by	shaping	the	pole	face	of	the	quadrupole	rods.
• Such	a	trap	would	allow	us	to	study	lattices	with	strong	nonlinearities	
together	with	a	substantial	space	charge	tune	shift.
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Introducing	nonlinear	components
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5.2. Coherent resonances

In an actual beam transport channel, the
betatron phase advance per FODO cell is often
taken near p=2: This is consistent to the assump-
tion sp ¼ p=2 made in Section 3. A question arises,
however: can sp be any value as long as it is well
inside the stability range derived from the single-
particle analysis? The answer is of course no. The
design operating point must be carefully chosen
whenever the plasma density is high. Past analytic
and numerical calculations have revealed that the
beam quality may be seriously deteriorated by
parametric resonances induced by the periodic
nature of the external focusing force. The in-
stability takes place depending on the magnitudes
of the bare phase advance and tune depression.
Since a Paul trap is dynamically equivalent to a
beam transport channel as proven in Section 2, we
expect an analogous phenomenon to affect the
stability of a single-species plasma in the trap. For
instance, if sp is set greater than p=2; a critical
stopband will appear in the area where the space-
charge-depressed phase advance s is slightly below
p=2: This is largely due to a half-integer resonance.
There also exist many other stopbands associated
with linear and nonlinear resonances. In many
cases so far, the operating point of a Paul trap has
been selected somewhere in the middle of the
Mathieu stability domain without deep considera-
tions of possible collective instabilities. Such a
vague attitude is not acceptable when the confined
plasma is either dense or cold. Inversely speaking,
we can systematically study the coherent reso-
nances in space-charge-dominated beams by ob-

serving the plasma behavior in the trap. All we
need to do is just to change the plasma tempera-
ture (equivalently, the tune depression) after
adjusting sp to a specific value. The temperature
is controllable with the laser cooling technique
while sp can readily be adjusted by modifying the
RF parameters V0; d; and l: Although we gave in
Fig. 2 a simple example corresponding to a
standard FODO lattice, it is indeed possible to
replicate much more complex lattice structures.

Particle beams stored in circular machines are
exposed to periodic nonlinear perturbing forces
originating from magnetic field imperfections.
These undesirable driving forces may lead to the
enhancement of nonlinear coherent resonances.
The Paul trap configuration is not very suitable for
a systematic study of such resonances because it is
difficult to control the strengths of individual
multipole components in the plasma confinement
field. The low-order nonlinear components with
the harmonic numbers n ¼ 3 and 4 are generally
quite weak as already verified, whereas they are
practically much more important than the other
higher-order harmonics. In order to strengthen the
low-order nonlinearity, a drastic modification of
the trap structure is necessary. Fig. 6 shows the
schematic drawing of the modified traps designed
for the purpose. In the type-(a) configuration, four
sub-electrodes are installed in-between the main
electrode rods. A time-dependent potential VsðtÞ is
applied to all the sub-electrodes. In the type-(b)
configuration, two pairs of electrodes with differ-
ent r’s have been used. Owing to the breakdown of
the four-fold symmetry of the original structure,
we can at least enhance the fourth harmonic

Fig. 6. Cross-sectional view of modified Paul traps.
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5.2. Coherent resonances

In an actual beam transport channel, the
betatron phase advance per FODO cell is often
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is controllable with the laser cooling technique
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standard FODO lattice, it is indeed possible to
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difficult to control the strengths of individual
multipole components in the plasma confinement
field. The low-order nonlinear components with
the harmonic numbers n ¼ 3 and 4 are generally
quite weak as already verified, whereas they are
practically much more important than the other
higher-order harmonics. In order to strengthen the
low-order nonlinearity, a drastic modification of
the trap structure is necessary. Fig. 6 shows the
schematic drawing of the modified traps designed
for the purpose. In the type-(a) configuration, four
sub-electrodes are installed in-between the main
electrode rods. A time-dependent potential VsðtÞ is
applied to all the sub-electrodes. In the type-(b)
configuration, two pairs of electrodes with differ-
ent r’s have been used. Owing to the breakdown of
the four-fold symmetry of the original structure,
we can at least enhance the fourth harmonic

Fig. 6. Cross-sectional view of modified Paul traps.
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Fig. 1. Sketch of the 22-pole ion trap. Ion confinement in radial direction is achieved
by applying a RF voltage to the 22 small rods, while longitudinal confinement is
controlled by the inner cylindrical endelectrodes.

[4–6,9,20–26]. After a presentation of its geometry and the cho-
sen operating parameters in Section 2, the applied computational
methods are outlined in Section 3 and test runs of the code are
presented (Section 4). Thereafter, ion velocity distributions and the
deduced ion temperatures are presented for an infinitely long 22-
pole trap (Section 5) under varying parameters. The effect of the
endelectrodes (Section 6) used for longitudinal confinement and
trap imperfections (Section 7) are also discussed. Finally, a con-
clusion is drawn about the temperature differences seen in our
laboratory [5,6] and an outlook is given for the applicability of the
presented methods for the design of future multipole traps with in
situ mass-selection capabilities.

2. Trap geometry and operating parameters

The trap geometry considered here is a 22-pole ion trap [19] as
shown in Fig. 1. It consists of 22 small rods (each 1 mm diameter,
3.7 cm long) which circumscribe a cylinder of r0 = 5 mm radius. The
two phases of an RF voltage with amplitude V0 and frequency f are
applied to the 2 × 11 rods, confining the ions in the radial direction.
For the confinement in longitudinal direction, two 6.6 mm inner
diameter cylindrical electrodes (the inner ones shown in Fig. 1),
called endelectrodes, are held at a positive voltage V with respect
to the trap potential. The trap is usually mounted on a closed-cycle
helium refrigerator, which cools the admitted gases to the temper-
ature T. The remainder of this paper is concerned with how the
buffer gas temperature is transmitted to the ion kinetic tempera-
ture, depending on the parameters introduced above. Oriented at
our earlier experiments [5], the standard conditions summarized
in Table 1 were chosen for the simulations.

3. Computational methods

For the numerical simulations, the program Labview 7.1 under a
Linux operating system has been chosen as it offers easy handling,
visuality, and predefined routines. Newton’s equations of motion
are integrated for one singly charged ion of mass m in three dimen-
sions. Doing small time steps of fixed length (1/50 of the RF period

has proven to be sufficient in most cases), the change of the ion
position and velocity is calculated and added. The so-called leapfrog
algorithm was used [27]. Higher Runge–Kutta integration methods
have not been applied to keep the program simple, and because
high precision was not necessary as usually buffer gas collisions
randomize the ion velocity. Following the motion of the single ion
in the trap, distributions of its position and/or velocity can be sam-
pled in regular or random time intervals. As we were primarily
interested in the ion kinetic temperature, mostly distributions of
the velocity magnitude v = ∥v⃗∥ were recorded. This velocity distri-
bution corresponds to the one obtained for an ensemble of many
ions at one instant. The temperature of the ion ensemble can then
be defined by

T = !mv̄2

8k
(1)

where v̄ is the mean of the (in general non-Maxwellian) velocity dis-
tribution. A sketch of the basic program flowchart is shown in Fig. 2,
and in the following the modular ingredients of the program, i.e.,
the RF field, the buffer gas collisions, the field of the endelectrodes,
and the space charge field, are described in more detail.

3.1. Linear multipole RF field

The calculation of the RF-field is straightforward as the analyti-
cal expression of the time-dependent potential inside an infinitely
long multipole can be used (see e.g., Gerlich [17])

˚(r, ", t) = V0(r/r0)n cos(n") sin(ωt) (2)

where V0 is the voltage amplitude applied to the 2n hyperbolic
electrodes enclosing an inner radius r0, and ω = 2!f is the angular
frequency. The electric potentials for different multipolarities n are
visualized in Fig. 3 together with some typical ion trajectories. From
expression (2) the E-field can be easily derived:
(

Ex

Ey

)
= nV0

rn−1

rn
0

(
− cos((n − 1)")
sin((n − 1)")

)
sin(ωt). (3)

Note that the E-field above is given in Cartesian coordinates,
while its dependency is in polar coordinates r and ". Although the
above E-field is exactly valid only for a pure multipole field (i.e., for
electrodes with perfect hyperbolic shape), the above formula with
n = 11 is a very good approximation for a 22-pole trap (shown in
Fig 1), as calculations reveal that the contribution of higher order
multipoles (n = 33, 55, 77, . . .) due to the circular electrode shape
(instead of hyperbolic ones) is less than 2%.

3.2. Calculation of electrostatic fields

If desired, electrostatic fields can be included into the simula-
tions, for example those generated by the cylindrical endelectrodes
(see Fig. 1) in order to confine the ions in longitudinal direction.
Electrostatic fields are calculated by a separate Labview routine
which uses the relaxation method similar to that applied by Simion
[28]. Simion itself has not been used as its capabilities to export
data (as for example potential data files) are limited. The numerical
solution of the Laplace equation, $%(x, y, z) = 0, works as follows

Table 1
Chosen parameters for numerical simulations.

Inner radius Ion mass RF Buffer gas

Multipolarity Frequency Amplitude Mass Temperature Collision rate

r0 = 5 mm m = 4 u n = 11 f = 17 MHz V0 = 15 V mb = 4 u T = 18 K R ≈ 105 s−1

The ion and buffer gas masses of H2D+ and He were considered [5,6]. The buffer gas collision rate corresponds to a He density of about 10−14 cm−3.

One gets the combined profile just by solving this equation.
We have found that coefficients up to C30 suffice for getting
the required profile. If necessary, one can introduce terms
like C15 , C21 , etc. to get a good profile (C9 is left out
because it is the main error term in the sextupolar field!. In
the case of a quadrupole, one needs to determine only one
profile as all the four poles are identical. But in the combined
magnet, the four poles differ substantially from each other
either in shape or in orientation. This is because the overall
symmetry of the magnet changes to a twofold symmetry as
shown in Fig. 1. In other words, the profile equation of the
combined magnet changes its form as we replace u by u
1p/2, u1p and u13p/2. So the four profile equations are

C2r2 cos~2u!1C3r3 cos~3u!1C14r14 cos~14u!

1C18r18 cos~18u!1•••51, ~10!

C2r2 cos~2u!1C3r3 sin~3u!1C14r14 cos~14u!

1C18r18 cos~18u!1•••51, ~11!

C2r2 cos~2u!2C3r3 cos~3u!1C14r14 cos~14u!

1C18r18 cos~18u!1•••51, ~12!

C2r2 cos~2u!2C3r3 sin~3u!1C14r14 cos~14u!

1C18r18 cos~18u!1•••51. ~13!

In practice, one needs to determine only the quadrupole pro-
file carefully by a proper choice of the coefficients. After-
wards one has to solve only the above four equations.

B. Dipole-quadrupole magnet

We now demonstrate the procedure of designing a com-
bined function dipole-quadrupole magnet. Such magnets, of
course, are extensively used in accelerator laboratories and
lots of designs of these magnets exist. Here we first design a

dipole of the required field quality. One has to keep in mind
that in a quadrupole or a sextupole one is interested in the
field for r less than the half aperture. But in a dipole the
good-field region of interest may be much larger than the
pole gap. For dipoles having a small good field region, one
may start with C35C55C750, but for a larger good field
region one may require to put C9 and some other higher
order terms to zero. We generally take C35C55C75C9
5C1150 and then take a small value of C13 which mainly
determines the field quality. One has to keep in mind that as
one puts higher and higher error coefficients to zero the pole
width also increases. Thus a typical profile equation for a
dipole is

C1r cos~u!1C13r13 cos~13u!1C15r15 cos~15u!

1C17r17 cos~17u!1C19r19 cos~19u!1•••51. ~14!

For getting a half-pole gap of 1, we use the normalizing
condition

C1512C132C152C172C192¯ .

We now adjust the values of the higher harmonic coefficients
to get a pole which has a small and constant width. For
introducing the field gradient in this dipole, we now put the
cos(2u) term in the profile equation. For getting a good pole
shape, one may need to insert the higher quadrupole error
coefficients which do not change the field quality but has
effect on the pole width. Thus we write the profile equation
for a dipole-quadrupole magnet as

C1r cos~u!1C2r2 cos~2u!1C13r13 cos~13u!

1C14r14 cos~14u!1C15r15 cos~15u!

1C17r17 cos~17u!1C18r18 cos~18u!1•••51, ~15!

FIG. 2. New pole profile of a combined function quadrupole-sextupole. The
main error in the quadrupole field comes from the harmonic C1450.0001. m
is the ratio of the differential gradient of the sextupolar field (6C3) to the
quadrupole field gradient (2C2).

FIG. 1. Ideal pole profile of a combined function quadrupole-sextupole. The
profiles deviate more from the ideal quadrupole as the sextupole contribu-
tion increases. m is the ratio of the differential gradient of the sextupolar
field (6C3) to the quadrupole field gradient (2C2).

2657Rev. Sci. Instrum., Vol. 70, No. 6, June 1999 Sarma, Pattanayak, and Bhandari
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Multipole	trap

• Maintain	radius	of	main	rods	to	inscribed	radius	radio	⍴1/r0	≅ 1.15	to	
ensure	good	quadrupole	focusing.

• Add	“subrods”	to	control	sextupole and	octupole components.
• For	any	rod	geometry,	solve	the	Laplacian	numerically	to	calculate	the	

coefficients	an,	𝜑n in	the	multipole	expansion

FFAG'17,	Cornell	University,	Ithaca,	NY 16



Hamiltonian:	multipole	case

Hamiltonian	including	normal	quadrupole,	sextupole and	octupole terms	(ignoring	skew	terms).

where	

17

Accelerator	case Paul	trap	case

B = B0

✓
r

r0

◆

Scaling	FFAG	case
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Linear	optics	translation

1. Convert	scaling	FFAG	to	a	straight	quadrupole	channel.
• Including	the	quadrupole	component	from	the	scaling	field	may	not	be	
sufficient.	Also	need	to	take	into	account	the	effect	of	edge	focusing.

2. Convert	quadrupole	channel	to	LPT.
• In	order	to	preserve	tune,	scale	quadrupole	strength	k2 with	1/L^2	and	
convert	to	RF	voltage.		Note,	transfer	matrix	for	thin	lens	drift-quad-drift

1 𝐿/2
0 1 ' 1 0

−𝑘2𝐿 1 ' 1 0
0 𝐿/2 = 1 − 𝑘2𝐿2/2

𝐿
2 +

𝐿
2 (1 − 𝑘2𝐿

2/2)

−𝑘2𝐿 1 − 𝑘2𝐿2/2
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Test	case	- KURRI	150	MeV	scaling	FFAG
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CEA DAPNIA-04-188 CERN-NUFACT-Note-140 4

3 Ray-tracing studies

Two field maps are concerned, both based on the DFD design parameters shown in Fig. 3 yielding TOSCA
map geometry shown in Fig. 4. Their names as used in the following are respectively

30 deg 10.24

4.75
3.43

4.3 m
5.47 m

D

F

D

Figure 3: Geometry of the DFD sector triplet and 30 de-
grees sector cell.
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Z100.0
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Figure 4: Geometry of TOSCA field map, cov-
ering half the angular extent.

k75v113my021f45500d3900 and k75v113my021f45500d2700. They differ by the current in the tuning coil
of the D magnets of the triplet. Namely, the number of Ampère-Turns in the F coil is 45500 whereas it is
respectively 3900 and 2700 in the tuning coil of the D magnets.

These tunings provide a difference in the νz value of the order of 0.1 (full turn) between the two designs.

The map data file itself contains a quarter of the DFD magnet, assuming symmetry firstly with respect to
the median plane and secondly with respect to the vertical geometrical symmetry plane at the center of the F
dipole. Developments in the ray-tracing code Zgoubi had to be performed on the one hand so as to take care
of this symmetry hypothesis in making a full 3-D map from the reduced TOSCA output data, but mostly, on
another hand in order for the code to be able to handle a map described in a cylindrical coordinates system - in
order that what is done be clear and to allow comparison with other codes, the ingredients for that are briefly
described in App. A. A typical Zgoubi data file as used in the following studies is also given in App. B, for
reference.

3.1 TOSCA map k75v113my021f45500d3900

3.1.1 Sample tracking results

This Section shows sample tracking results that describe the working conditions and allow checking the
correct behavior of the field reading and interpolation process.

Field data The field experienced on closed orbits (c.o. in the following) can only be known once the c.o.
itself is known. Figs. 5 shows the closed orbits for 10, 22, 43, 85 and 125 MeV, determined by an iterative
method : there are several manner to obtain the radius at c.o. origin, for instance by multi-turn tracking in its
vicinity, in this case the center of the phase-space ellipse is the c.o. origin, or by insuring the symmetry of the
trajectory or of the field experienced on that trajectory, form entrance to exit of the cell, or by insuring zero
angle at cell ends. From there on the field experienced on c.o. can be obtained, it is given in Fig. 6.

Machine parameters

Reference radius 5.4	

Focusing structure DFD

Cell number 12

Injection energy 11	MeV

Extraction	energy 100-150 MeV

Field	index,	κ 7.6

Design tunes	(Qx,Qy) (3.8,	1.4)

• Construct	quadrupole	triplet	with	lengths	given	by	arc	length	of	FFAG	magnets
• Strength	of	quadrupole	given	by	κ/ρr,		qf,	qd =	(1.3,	-0.9).		Vertical	tune	unstable!	
• Instead	use	MADX	optimisation to	find	qf,	qd =	(1.9,	-2.3)	results	in	desired	tunes.



Step	1:	Scaling	FFAG	to	quadrupole	channel	

0.0 0.50 1.00 1.50 2.00 2.50 3.00
                               s (m)

cell MAD-X 5.02.13  08/08/17 15.28.29

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0

βx
(m

),
βy

(m
)

β x β y

Zgoubi result,	Qx,	Qy =	(0.314,	0.117). MADX,	Qx,	Qy =	(0.314,	0.117).
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Step	2:	Quadrupole	channel	to	LPT

0.0 50. 100. 150. 200. 250. 300.
                               s (m)

cell MAD-X 5.02.13  09/08/17 12.26.21

50.
100.
150.
200.
250.
300.
350.
400.
450.
500.
550.
600.
650.

βx
(m

),
βy

(m
)

β x β y

Tunes		Qx,	Qy =	(0.314,	0.117).

Equivalent	trap	optics	where	1	“cell”	is	a	1us	period.RF	waveform.
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Example	FFAG	scenario		
cell	tune	close	to	1/4

FFAG'17,	Cornell	University,	Ithaca,	NY 22

Tune	variation	with	amplitude Phase	space

Assume	a	ring	with	KURRI	150MeV	geometry	but	adjust	field	index	and	F/D	ratio	to	get	desired	tunes.



Example	FFAG	scenario
cell	tune	close	to	1/3
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Tune	variation	with	amplitude Phase	space



Amplitude	detuning	in	an	asymmetric	trap.

FFAG'17,	Cornell	University,	Ithaca,	NY 24[Michaud	et	al,	2005]
spectively. The values of A0 and A4 are determined by
the ratio Ry/Rx.

As with 3-D traps, the addition of an octopole field to
a linear quadrupole field causes a variety of new effects.
In this paper, we describe modeling of ion motion and
experimental investigations of ion excitation in a linear
quadrupole trap with a 4% added octopole field (A4 !
0.0398). The results are compared to those obtained
with a conventional rod set with A4 ! 0. We derive the
effective- or pseudo-potential [9, 10] arising from the
potential of eq 1. Motion of an ion in the effective
potential with collisions and excitation is that of a
forced, damped, anharmonic oscillator. The frequencies
of ion oscillation in the x and y directions shift with
increasing amplitude in equal but opposite directions.
Excitation profiles for ion ejection or fragmentation
become asymmetric and in some cases can show bist-
able behavior where the amplitude of oscillation sud-
denly jumps between high and low values. These
sudden jumps in amplitude can in principle be used to
produce high resolution in ion isolation or ion ejection.
Experiments show many of these effects. Ions are in-
jected into a linear trap, stored, isolated, excited for
MS/MS, and then mass analyzed in a linear time-of-
flight mass analyzer [11, 12]. Frequency shifts between

the x and y motions are observed, and in some cases
asymmetric excitation profiles and bistable behavior are
observed. Higher MS/MS efficiencies are expected
when an octopole field is added. We have measured
MS/MS efficiencies (N2 collision gas) with a conven-
tional quadrupole rod set and a linear ion trap with A4
! 0.0398. Efficiencies are chemical compound depen-
dent, but when an octopole field is added, they can be
substantially higher than with a conventional rod set,
particularly at pressures of 1.4 " 10#4 torr or less.

Experimental
A schematic of the system used, similar to a trap-TOF
system described previously [11, 12], is shown in Figure 2.
Ions formed by electrospray pass through a curtain gas
(dry N2, 99.999% stated purity, Praxair Canada Inc., Delta,
British Columbia, Canada), and enter the vacuum system
through a 0.25 mm diameter orifice and then a 0.75 mm
diameter skimmer orifice in a differentially pumped re-
gion at a background pressure of 1.0 torr. Ions then enter
a quadrupole ion guide Q0, 30 cm long with a field radius
of 4.5 mm, pumped to a pressure of about 3.5 mTorr by a
230 L/s turbomolecular pump (TPH 240, Balzers, Nashua,
NH). Ions then pass through a 2 mm diameter aperture,
the entrance lens, into a linear quadrupole ion trap Q1,
pumped to a base pressure of 3 " 10#6 torr by a 550 L/s
turbomolecular pump (TV 551, Varian, Torino, Italy). The
pressure in the trap could be increased above the base
pressure by adding nitrogen (99.999% stated purity, Prax-
air Canada Inc.) to the chamber through a needle valve.
The trap pressure was measured with an ion gauge for
pressures below 1 " 10#4 torr and a 0.1 torr capacitance
manometer for pressures above 1 " 10#4 torr. Both were
calibrated against a high precision capacitance manometer
(Baratron model 120, manufacturer’s stated accuracy
0.12% of reading, MKS, Boulder, CO). Two traps, Q1, each
20 cm long were used: a conventional quadrupole rod set
with round rods field radius 4.17 mm, and ratio of rod
radius to field radius R/r0 ! 1.126, or a quadrupole rod set
with a nominal 4% octopole field (A4 ! 0.0398) (the largest
A4 of the rod sets with added octopole fields that we have
constructed) and field radius of 4.5 mm (Figure 1) [8]. The
dimensionless amplitudes of the higher order multipoles
in these rod sets are shown in Table 1. Ions were confined
in Q1 by applying trapping potentials to the entrance and
exit apertures. Ions then passed through a 2 mm diameter
aperture in a cone and three aperture lenses (L1-L3), 6.4
mm i.d. (spacing 2.5 mm) into the source region of a linear
time-of-flight (TOF) mass analyzer (R. M. Jordan Co.,
Grass Valley, CA). The TOF, with a mass resolution
limited to several hundred [11], is pumped by a 360 L/s
turbomolecular pump (Turbovac 361, Leybold, Missis-
sauga, Ontario, Canada) to a base pressure of 3 " 10#7

torr.
Isolation waveforms, notched in frequency space,

were created with SxWave software (Pan Galactic Sci-
entific, Peterborough, Ontario, Canada) using a “comb”
of frequencies separated by 250 Hz with random

Figure 1. Cross sections of the electrodes of a linear quadrupole
with added octopole field. The circular electrodes in the x direc-
tion have radius Rx and the circular electrodes in the y direction
radius Ry. All four electrodes are equally spaced from the central
axis by a distance r0. The rod set used here had r0 ! 4.50 mm, Rx
! 4.5 mm, and Ry/Rx ! 1.516. The resulting multipole amplitudes
are in Table 1.

836 MICHAUD ET AL. J Am Soc Mass Spectrom 2005, 16, 835–849

ν =	0.24.

• One	approach	is	to	ensure	the	same	tune	variation	from	the	beam	centroid	to	the	rms radius.
• However,	detuning	with	amplitude	(action)	will	be	differ	in	Paul	trap	(β	is	much	higher).
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Fig. 3 Electrodes’ potentials in the octupole control mode. The left panel shows the equipotential lines when the
four planar electrodes are given equal voltages VO. All four quadrupole rods are grounded. The right panel
shows the octupole strength a4 normalized by ã2, i.e. the quadrupole strength of the normal operating mode
when VO/VQ = 1. The plate thickness is chosen to be h1 = 1 mm. For reference, a8/ã2 is also plotted with
a broken line.

octupole field can be further strengthened by the use of thinner plates if necessary. According to Warp

calculations, a4 scales as a4/ã2 ≈ 0.0166× (h1/R0)−0.441 when VO/VQ = 1.

The strengths of nonlinear components are almost unchanged even if we excite the quadrupole rods

simultaneously with the planar electrodes. The total electric field when the quadrupole rods also have

the finite voltages ±VQ is simply the superposition of the field in Fig. 2(a) and that in Fig. 3(a). This is

because the sum of these two independent fields satisfies the same boundary condition as the total field

has to do. Suppose that there are N independent electrodes of arbitrary cross sections fixed at certain

transverse positions. Each electrode is assumed to have a constant voltage Vi (i= 1,2, · · · ,N). The total

static potential generated by these electrodes can be decomposed into N terms as F(x,y) =∑Ni=1ψi(x,y)

where ψi is the scalar potential derived from the Laplace equation under the boundary condition that

all electrodes except for the i-th one are grounded. This is evident because the sum ∑Ni=1ψi is still a

solution to the Laplace equation and satisfies the proper boundary condition.

3.3 Sextupole control mode

The effective excitation of the sexupole field is a bit tricky. Unlike the octupole control mode in Fig.

3(a), we need to add finite voltages not only to the planar electrodes but also to the quadrupole rods.

Figure 4(a) shows an example of the boundary condition that allows us to enlarge the coefficient a3.

The potentials VS of opposite signs are given to the horizontal plates while the vertical pair is grounded.
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Fig. 4 Electrodes’ potentials in the sextupole control mode. The left panel shows the equipotential lines when
the voltages ±VSQ and ±VS are applied to the quadrupole and horizontal planar electrodes for sextupole
enhancement. The strengths of other low-order multipole components relative to the sextupole strength are
plotted in the right panel as a function of the voltage ratio VSQ/VS. The plate thickness is chosen to be
h1 = 1 mm.

In addition to ±VS, we apply the voltages ±VSQ to the quadrupole rods as depicted. This electrode

excitation pattern gives rise to every other multipole components. Particular attention must be paid to

the dipole component a1 because its order is the lowest. Fortunately, a1 can be minimized in the vicinity

of the trap’s mechanical center by adjusting the ratio VSQ/VS. As is clear from Fig. 4(b), the dipole

component disappears when VSQ/VS ≈ 0.02. The optimum voltage ratio required for the minimization

of a1 obeys the scaling law

VSQ
VS

≈ 1.048×
(
h1
R0

)−0.455
, (4)

if the quadrupole rods are designed to satisfy the condition ρ0/R0 = 1.15 and the four plates are fixed at

the radial positions defined by Eq. (3).

The strengths of the sextupole (n= 3) and decapole (n= 5) components divided by the quadrupole

strength ã2 in the normal operating mode are evaluated in Fig. 5 under the condition in Eq. (4). By

increasing VS to the same level of VQ, a3 becomes a few percent of ã2. We have also found how these

nonlinearities scale as a function of the plate thickness h1. Provided VSQ/VS satisfies the condition (4),

the relative strengths follow the scaling laws a3/ã2 ≈ 0.0135× (h1/R0)−0.454 and a5/ã2 ≈ 0.0064×

(h1/R0)−0.456 where we have assumed VQ = VS as an example. Interestingly, the three ratios VSQ/VS,

a3/ã2 and a5/ã2 have roughly the same power dependence on the geometric factor h1/R0.
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Fig. 5 Strengths of sextupole (n = 3) and decapole (n = 5) fields vs. the potential ratio VS/VQ in the sextupole
control mode. VSQ has been adjusted to the optimum value required by the condition (4) to eliminate the
dipole component a1. The coefficients a3 and a5 are normalized by the quadrupole strength ã2 evaluated
under the normal operating condition with VQ =VS.

4 Discussion

4.1 Effect of electrode misalignments

It is important to figure out how the ideal multipole fields calculated in the last section are affected by

the misalignments of the electrodes. Such an artificial error is unavoidable in practice, which results in

considerable enhancement of all nonlinear fields. To check this error-induced effect, we randomly shift

all electrodes about the ideal positions, and then, expand the resultant electric field into multipole com-

ponents. Table 1 summarizes the relative multipole strengths (%) in various operating modes explained

in the last section. “Regular Paul trap” has the ordinary four-rod structure illustrated in Fig. 1(a). The

“normal operating mode” corresponds to the electrode excitation pattern in Fig. 2(a) where all extra

plates are grounded. We have assumed that VS in the “sextupole control mode” and VO in the “octupole

control mode” are equal to VQ in the “normal operating mode”. VSQ in the “sextupole control mode” is

automatically determined from Eq. (4) once we choose VS. The normalization constant ã2 is evaluated

under the boundary condition of the normal operating mode. Note that the centroid of an ion plasma

in the trap is located at the multipole-field center where the dipole component vanishes. We, therefore,

need to expand the scalar potential about the field center (instead of the original mechanical center) to

make a reasonable estimate of an. We have here defined the field center under the boundary condition

of the normal operating mode because the plasma is exposed to this strong focusing potential most of

Octupole mode Sextupole mode

K.	Fukushima	and	H.	Okamoto,	”Design	study	of	a	multipole	ion	trap	for	beam	physics	applications”,	Plasma	and	Fusion	Res.	10	(2015)	1401081.

A	multipole	trap	has	been	constructed	and	is	now	being	commissioned.	



Conclusions/Future	work

• Experiments	relevant	to	a	scaling	FFAG	could	be	carried	out	in	a	multipole	
Paul	trap	with	controllable	sextupole and	octupole.
• Further	investigations	required	into	traps	with	even	higher	order	multipoles.
• 2D	and	3D	tracking	of	plasma	in	trap,	including	space	charge,	using	a PIC	
code	(e.g.	Warp)	is	desirable.

FFAG'17,	Cornell	University,	Ithaca,	NY 26



Bibliography
1. M.	Barbier,	”A	Mechanical	Analogue	for	the	Study	of	Betatron Oscillations”,	Proc.	CERN	Symp. (1956)	262.
2. D.	J.	Berkeland et	al,	“Minimization	of	micromotion in	a	Paul	trap”,	J.	Applied	Phys,	83[10]	(1998)	5025.
3. T.	Brunner	et	al,	“TITAN’s	Digital	RFQ	Ion	Beam	Cooler	and	Buncher,	Operation	and	Performance”,	Nucl.	Instr.	

Meth	A	(2012).
4. K.	Moriya	et	al,	Phys.	Rev.	ST	Accel.	Beams	18	(2015),	034001.
5. H.	Okamoto	et	al,	NIMA	(2002)	244-254.
6. P.	R.	Sarma et	al,	Rev.	Sci.	Instrum.	Vol.	70(6)	(1999)	2655.
7. O.	Asvany and	S.	Schlemmer,	Int.	J.	Mass	Spectrom.	279	(2009)	147-155.
8. A.	L.	Michaud	et	al,	“Ion	exciation in	a	Linear	Quadrupole	Ion	Trap	with	an	Added	Octupole Field”	J	Am	Soc

Mass	Spectrom 2005.

FFAG'17,	Cornell	University,	Ithaca,	NY 27



Extra	Slides

FFAG'17,	Cornell	University,	Ithaca,	NY 28



Rod	radius	optimisation.

• Using	cylindrical	rods	rather	than	ideal	hyperbolae	introduce	a	dodecapole component.
• This	is	minimised by	choosing	⍴/r0	≅ 1.15.
• Results	obtained	using	Mathematica	(2D)	and	CST	Studio	(3D).
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Square	wave	case.

• The	equation	of	motion	in	the	square	waveform	case	is	given	by	the	
Meissner	equation	which	has	an	exact	solution.
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Paul	trap	case

FODO	case	(zero	drift	
length)

[T.	Brunner	et	al,	2012]		

Quadrupole	length	L,	norm.	gradient	k2.



Similarity	of	field	profile
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• In	order	to	calculate	multipole	components,	use	Taylor	expansion	of	the	scaling	field	about	the	
reference	radius.

B = B0

✓
r

r0

◆

• In	order	to	ensure	a	similar	profile	in	the	Paul	trap,	ensure	that	the	ratio	of	the	differential	gradient	for	
each	multipole	(n>2)	and	the	quadrupole	gradient	is	the	same	in	both	cases.

• In	the	scaling	FFAG	case	the	relative	differential	gradient	is	given	by	


